EFFECTS OF CLIMATE ON THE EMERGENCE AND THE SPREAD OF VECTOR BORNE INFECTIOUS DISEASES

Marco Ajelli

Predictive Models for Biomedicine & Environment Center for Information Technology Bruno Kessler Foundation, Trento, Italy

> Trentino Clima 2011 Trento, Italy Sep. 9, 2011

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

VECTOR BORNE INFECTIOUS DISEASES

- An infectious disease is an illness resulting from the presence of pathogens in an organism which is transmissible
- In vector-borne diseases the pathogens responsible of the disease are transmitted from an infected individual to another individual by a competent vector (e.g., arthropods, foxes, bats, ...)
- An emerging disease is a disease whose incidence is increasing

Necessary conditions for the emergence of *new* vector borne diseases

- *I* Importation of new species (e.g., as an effect of the globalization)
- Il Proliferation of new species (e.g., due to the arising of new opportune habitat)

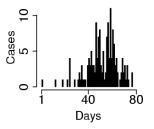
Disease	Vector
malaria	mosquito
dengue fever	mosquito
yellow fever	mosquito
chikungunya	mosquito
lyme	tick
rabies	fox, raccoon, bat,
Hendra virus	horse

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

EMERGING INFECTIOUS DISEASES IN ITALY

Has Italy already experienced the emergence of *"new"* infectious diseases?

Yes! Chikungunya epidemic on summer 2007


About chikungunya

- Caused by chikungunya virus (CHIKV)
- Vector-borne disease (A.Albopictus as competent vector)
- Symptoms: high fever, arthralgic disease

About the Italian outbreak

- Index case on June 23, 2007 (man arriving from India)
- Epidemic in Castiglione di Cervia and Castiglione di Ravenna (Emilia Romagna, 4,000 inhabitants)
- \blacktriangleright Large outbreak: \approx 10% of the population were infected

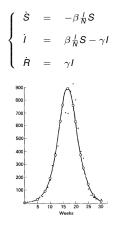
・ コット (雪) (小田) (コット 日)

Castiglione 2007, Chikungunya epidemic

MODELING THE EPIDEMIOLOGY OF CHIKUNGUNYA

A mathematical model is a representation of the essential aspects of a system

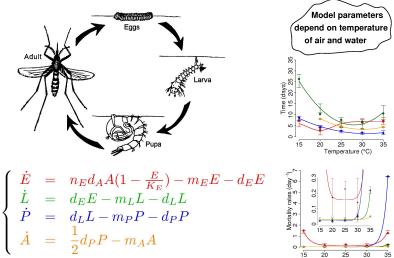
Ingredients for modeling an epidemiological process: pathogen and population


Modeling chikungunya:

- Host population (humans): "constant" over time
- Vector population (A. Albopictus): dynamical
- \blacktriangleright Pathogen transmission process: Vector \rightarrow Human \rightarrow Vector $\rightarrow \ldots$

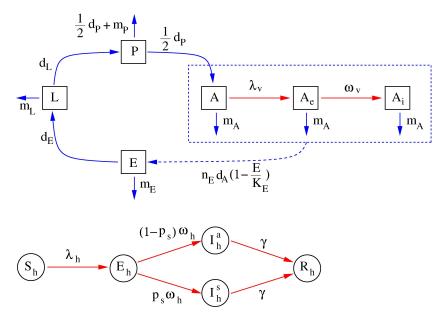
Why to model the 2007 CHIKV outbreak?

- 1. Estimating the transmissibility potential of the disease (in a temperate climate area)
- 2. Assessing the effectiveness of the enacted control strategies


SIR model: Kermack and McKendrick, 1927

Bombay 1915-16, plague epidemic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


MODELING A.ALBOPICTUS DYNAMICS: THE ROLE OF TEMPERATURE

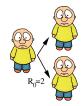
Temperature (°C)

(ロ) (同) (三) (三) (三) (○) (○)

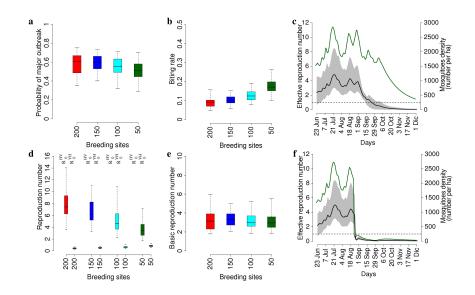
MODELING CHIKV TRANSMISSION

The basic reproductive number R_0

Definition

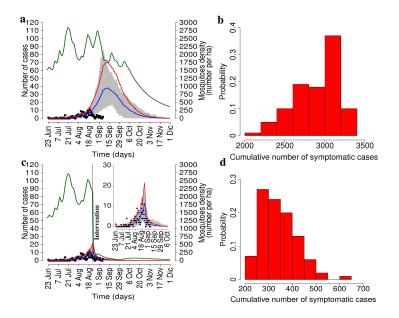

- R₀ of host–vector infectious diseases is the number of secondary infections that arise when a single infective host is introduced into a fully susceptible host population through pathogen transmission by the vector
- R₀^{VH} is the average number of hosts directly infected by the introduction of a single infective vector into a fully susceptible host population
- *R*₀^{HV} is the average number of vectors directly infected by the introduction of a single infective host into a fully susceptible vector population

Computation

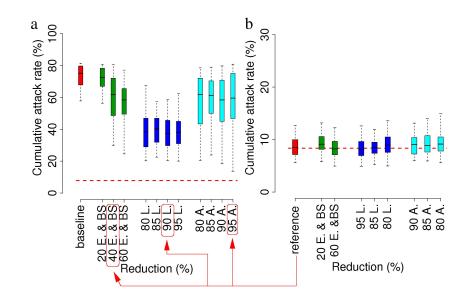

• $R_0 = R_0^{VH} R_0^{HV}$

Implication

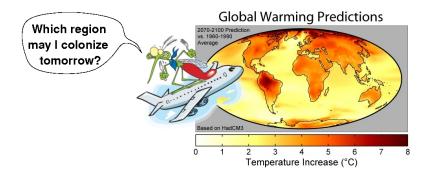
- $R_0 > 1$ chance of observing a "large" outbreak
- The larger R₀ the more difficult to control the epidemic is



BREEDING SITES, BITING RATE AND REPRODUCTIVE NUMBERS


◆ロト★週ト★注下★注下 注 のなぐ

EPIDEMIC DYNAMICS AND FINAL EPIDEMIC SIZE


◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

EFFICACY OF DIFFERENT DISINFESTATIONS

SUMMARY AND CONCLUSION

- Emerging vector borne infectious diseases represent a real threat, as proved by the Italian chikungunya outbreak
- CHIKV can be highly transmissible also in temperate climate countries
- Chikungunya can be controlled by massive disinfestations
- Globalization and climate changes contribute to the emergence of new infectious diseases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thanks for your attention

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgments

Most of this talk has been derived from *Transmission potential of Chikungunya virus and control measures: the case of Italy.* PLoS ONE, 6(5):e18860, 2011, by:

- Piero Poletti (Bruno Kessler Foundation)
- Gianni Messeri (Italian National Research Council)
- Marco Ajelli (Bruno Kessler Foundation)
- Roberto Vallorani (Italian National Research Council)
- Caterina Rizzo (Italian National Institute of Health)
- Stefano Merler (Bruno Kessler Foundation)